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Abstract

Due to engineering limitations, the spatial encoding gradient fields in conventional magnetic 

resonance imaging cannot be perfectly linear and always contain higher-order, nonlinear 

components. If ignored during image reconstruction, gradient nonlinearity (GNL) manifests as 

image geometric distortion. Given an estimate of the GNL field, this distortion can be corrected to 

a degree proportional to the accuracy of the field estimate. The GNL of a gradient system is 

typically characterized using a spherical harmonic polynomial model with model coefficients 

obtained from electromagnetic simulation. Conventional whole-body gradient systems are 

symmetric in design; typically, only odd-order terms up to the 5th-order are required for GNL 

modeling. Recently, a high-performance, asymmetric gradient system was developed, which 

exhibits more complex GNL that requires higher-order terms including both odd- and even-orders 

for accurate modeling. This work characterizes the GNL of this system using an iterative 

calibration method and a fiducial phantom used in ADNI (Alzheimer’s Disease Neuroimaging 

Initiative). The phantom was scanned at different locations inside the 26-cm diameter-spherical-

volume of this gradient, and the positions of fiducials in the phantom were estimated. An iterative 

calibration procedure was utilized to identify the model coefficients that minimize the mean-

squared-error between the true fiducial positions and the positions estimated from images 

corrected using these coefficients. To examine the effect of higher-order and even-order terms, this 

calibration was performed using spherical harmonic polynomial of different orders up to the 10th-

order including even- and odd-order terms, or odd-order only. The results showed that the model 

coefficients of this gradient can be successfully estimated. The residual root-mean-squared-error 

after correction using up to the 10th-order coefficients was reduced to 0.36 mm, yielding spatial 

accuracy comparable to conventional whole-body gradients. The even-order terms were necessary 

for accurate GNL modeling. In addition, the calibrated coefficients improved image geometric 

accuracy compared with the simulation-based coefficients.
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1. Introduction

Conventional magnetic resonance imaging (MRI) reconstruction methods based on direct 

fast Fourier transform implicitly assume that the spatial encoding gradient fields employed 

for MR signal formation and data acquisition are perfectly linear throughout the entire 

imaging volume (Glover and Pelc 1986). However, engineering limitations and 

physiological constraints such as the risk of peripheral nerve stimulation (PNS) dictate that 

the gradient fields are not perfectly linear and always contain higher-order nonlinear 

components (Glover and Pelc 1986; Harvey and Katznelson 1999; Lee et al 2015). In 

addition, for some emerging MR platforms allowing high system performance, gradient 

linearity may be intentionally sacrificed in return for increased gradient amplitude and slew 

rate (Roemer 1993; Lee et al 2015; Tan et al 2016). If linear gradients are presumed during 

image reconstruction, the effects of gradient nonlinearity (GNL) will manifest as geometric 

distortion into the generated images (O’Donnell and Edelstein 1985; Glover and Pelc 1986; 

Schad et al 1992; Janke et al 2004; Doran et al 2005; Baldwin et al 2007; Baldwin et al 
2009). The GNL-induced distortion has substantial impact on applications demanding high 

geometric accuracy, such as radiation therapy planning (Chen et al 2006; Huang et al 2016), 

apparent diffusion coefficient mapping (Tan et al 2013), and longitudinal studies of 

neurodegenerative diseases (Han et al 2006; Jovicich et al 2006; Gunter et al 2009). If the 

GNL fields are a priori known, their effects may be retrospectively corrected in image 

domain after MRI reconstruction (Glover and Pelc 1986), as conventionally implemented on 

commercial MR systems. Alternatively, the effect of GNL can be prospectively accounted 

for during, rather than after, image reconstruction, and therefore yield images that are 

compensated for GNL distortion without the need for interpolative postprocessing (Tao et al 
2015a; Tao et al 2015b; Tao et al 2016). Successful implementation of any gradient 

nonlinearity correction method relies on an accurate characterization of the GNL fields for 

an MR gradient system.

Conventionally, the GNL fields of a gradient system are characterized based on a 

parameterization of magnetic gradient field using spherical harmonic polynomial expansion 

(Glover and Pelc 1986; Janke et al 2004; Doran et al 2005). Given a particular gradient 

hardware design, electromagnetic (EM) simulation is performed to determine the 

coefficients of spherical harmonic polynomials. These coefficients are assumed to be 

applicable to all scanners built with the same gradient design, i.e., manufacturing variation is 

typically neglected. The order of spherical harmonic polynomials used for GNL correction 

varies among MR manufacturers and system models. Some whole-body MR systems utilize 

model coefficients up to the 5th order, as done on many General Electric (GE)’s systems 

(Glover and Pelc 1986).
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Conventional whole-body MR gradient systems usually apply gradient coil windings 

symmetrically along each of the physical X, Y and Z gradients. Therefore, only model 

coefficients of odd-orders are non-negligible and required for distortion correction. 

Alternatively, phantom-based calibration methods have also been described to extract GNL 

information from MR images acquired on fiducial phantoms based on various mathematical 

models, such as spherical harmonic polynomial model, spline model, and polynomial model 

(Wang et al 2004; Doran et al 2005; Hwang et al 2012a; Hwang et al 2012b; Trzasko et al 
2015; Huang et al 2016). Such methods allow the calibration of system specific GNL 

distortion fields.

Recently, a compact, asymmetric MR gradient system for brain imaging has been developed 

(Lee et al 2015). Due to the 42 cm inner diameter of the gradient coil, it is also capable of 

scanning extremities and infants. This system has a 26-cm diameter spherical volume (DSV) 

for imaging, and is capable of producing a gradient amplitude and slew rate of 80 mT/m and 

700 T/m/sec using a standard 1 megavolt-amp (MVA) per axis gradient driver due to the 

reduced coil inductance and resistance, with substantially reduced risk of PNS due to its 

compact spatial extent of the gradient coils (Lee et al 2015). In comparison to conventional 

whole-body gradient systems, the transverse gradients (i.e., physical X and Y) of this system 

employ gradient coil windings asymmetrically along the longitudinal direction (Roemer 

1993). Such a design facilitates patient access by shifting the imaging volume towards the 

patient end of the gradient coil. The design and construction of this compact asymmetric 

gradient system was detailed in a previous work (Lee et al 2015). However, due to the 

asymmetric design, this compact gradient system exhibits more complex GNL fields which 

require both odd- and even- order terms. Also, since the head fills nearly the entire field of 

view higher-order (i.e., N > 5) spherical harmonic polynomial models are needed for 

accurate characterization and calibration.

In this work, the GNL fields of this compact asymmetric gradient system over the entire 26-

cm DSV are characterized using the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 

phantom (Gunter et al 2009) and an iterative model fitting procedure (Trzasko et al 2015). 

We demonstrate that the GNL-induced image geometric distortion can be modeled using up 

to 10th order spherical harmonic polynomial terms including both even- and odd-order 

terms. The GNL information obtained through this calibration is compatible with the 

framework utilized in on-system GNL correction, and can also be used as an independent 

validation for the vendor-provided coefficients obtained from EM simulation.

2. Materials and methods

2.1. Fiducial Phantom

The GNL of the gradient fields were characterized using the ADNI phantom (figure 1), 

which is developed as a tool for evaluating image geometric distortion in the multi-site, 

multi-vendor ADNI project involving more than 58 sites (Jack et al 2008; Gunter et al 2009). 

The ADNI phantom is a 20-cm shell containing 160 spherical fiducial markers filled with a 

copper sulfate solution, a large 6.0 cm diameter signal-to-noise ratio (SNR) evaluation 

sphere in the center of the phantom, as well as two 3.0 cm diameter contrast-to-noise ratio 

(CNR) evaluation spheres. All fiducial markers have a diameter of 1.0 (158/160) or 1.5 cm 
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(2/160) and are located at known relative positions in the phantom shell. Associated software 

tools are available to track the positions of the fiducials in the phantom (Gunter et al 2009). 

The fiducial tracking software is orientation insensitive. A local coordinate system is first 

established by locating the large SNR sphere and the two 1.5 cm diameter fiducials in the 

phantom. It then tracks the 1.0 cm fiducials by searching in the neighborhood of their 

expected locations based on phantom design using a template-based cross-correlation 

method. The ADNI phantom and fiducial tracking tool has been tested in the ADNI project 

and has demonstrated accuracy, reproducibility, and stability against image distortion of 

various sources, as detailed by Gunter et al. (Gunter et al 2009)

2.2. Data Acquisition

The ADNI phantom was scanned with a single-channel transmit/receive (T/R) birdcage coil 

using a 3D inversion-recovery fast spoiled gradient echo (IR-FSPGR) acquisition (Bydder 

and Young 1985; Edelman et al 2009) (readout direction = superior/inferior (S/I); in-plane 

phase encoding direction = anterior/posterior (A/P); slab encoding direction = right/left 

(R/L); matrix = 256×256; in-plane field-of-view (FOV) = 27×27 cm2; in-plane resolution = 

1.055 mm; number of slices (i.e., partitions) = 196; slice thickness = 1.3 mm; TR/TI/TE = 

3.5/400/1.5 msec; flip angle = 11°). The IR-FSPGR sequence was adopted in this work 

following the recommendation of the ADNI group. In our experience, an FSPGR sequence 

can also be used and provide similar performance (Gunter et al 2009). A readout bandwidth 

(BW) of ±125 kHz was used to minimize the effect of off-resonance (readout gradient 

amplitude = 22 mT/m). To cover the entire 26-cm DSV of this gradient system of interest, 

the 20 cm-diameter ADNI phantom was scanned at gradient isocenter, and at ±3 cm offsets 

in the R/L, A/P and S/I directions along the gradient axes after manually shifting the 

phantom. To facilitate the experimental setup, the approximate positions of the displaced 

phantoms were confirmed using three-plane localizer images. Note that the exact positions 

of the phantom and fiducials were to be extracted from the acquired MR images, as 

described later in section 2.4, and the manual shifting of the phantom was to ensure the 

entire 26-cm DSV was covered. To examine the effect of off-resonance, data acquisition was 

repeated while the phantom was in the same position using the identical acquisition 

protocols, but with reversed readout gradient polarity. The built-in GNL correction on the 

scanner was disabled during these acquisitions.

The ADNI phantom was further scanned on the compact asymmetric gradient system using 

a fast spoiled gradient echo (FSPGR) sequence (BW = ±62.5 kHz; readout gradient 

amplitude = 11 mT/m; readout direction = superior/inferior (S/I); in-plane phase encoding 

direction = anterior/posterior (A/P); slab encoding direction = right/left (R/L); matrix = 

256×256; in-plane field-of-view (FOV) = 27×27 cm2; in-plane resolution = 1.055 mm; 

number of slices (i.e., partitions) = 252; slice thickness = 1.0 mm; TR/TE = 3.7/1.5 msec; 

flip angle = 11°) using the single-channel T/R coil.

A healthy human subject was also scanned in the asymmetric gradient system under an IRB-

approved protocol to demonstrate the effect of GNL correction, as described in later 

sections. Brain scan data were acquired with a 32-channel, receive-only brain coil (Nova 

Medical Inc., Wilmington MA, USA) using a 3D CUBE T2 FLAIR acquisition (Chagla et al 
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2008; Kallmes et al 2001) (readout direction = superior/inferior (S/I); in-plane phase 

encoding direction = anterior/posterior (A/P); slab encoding direction = right/left (R/L); 

matrix = 256×224; in-plane FOV = 25.6×24.3 cm2; number of slices (i.e., partitions) = 128; 

slice thickness = 1.4 mm; TR/TE = 7600/111 msec; BW = ±41.67 kHz; echo train length 

(ETL) = 180; flip angle = 90°). The raw data were retained for offline processing.

2.3. Iterative GNL Calibration Procedure

The distortion field due to GNL for the k-axis (k = X, Y or Z) gradient coil, dk(x⃗), can be 

modeled using a spherical harmonic polynomial model as shown in (1):

(1)

where x⃗ is the physical position within the imaging volume, r (x⃗), θ(x⃗), ϕ(x⃗) denote the polar 

coordinates of position x⃗, N is the order of spherical harmonic polynomial model,  and 

 represent coefficients of the spherical harmonic polynomial model terms of order n (0≤ 

n ≤ N) and degree m (0≤ m ≤ n ) for the k-axis gradient coil. Pnm(·)denotes the associated 

Legendre polynomial for the model terms with order n and degree m. Denoting S as the total 

number of model coefficients used in modeling of each gradient coil (including both 

and ), the GNL fields for the X, Y and Z gradient coils can be characterized using an S 
by 3 matrix C with each column of C denoting the model coefficients of the X, Y or Z 
gradient coil. The model coefficient C summarizes the distortion fields shown in (1) and can 

then be used for GNL correction. Define x as the original 3D MR image data set with GNL-

induced distortion (i.e., before any GNL correction), and further define Γ{x, C } as a 

function correcting the distortion in the image set x using model coefficient C (i.e., the 

distortion fields C represents). When x represents an image set of a fiducial phantom, such 

as the ADNI phantom used in this work, the fiducial positions in this image set can be 

extracted using a function Λ{x}. Hence, the fiducial positions estimated from the images 

after GNL correction using model coefficients C can be expressed as Π (C)=Λ{Γ{x, C }}, 

where Π(C) is a T by 3 matrix denoting the 3D positions of the T fiducials, and is a function 

of model coefficient C (i.e., the distortion fields). The residual GNL distortion after 

correction using C can be summarized by the mean-square-error (MSE) between the 

estimated fiducial positions Π(C) and the true fiducial positions Π0. The optimal model 

coefficients, Ĉ, can be found by solving the following nonlinear optimization problem 

(Trzasko et al 2015):

(2)

where ||·||F denotes the Frobenius norm of a matrix. Equation (2) explicitly estimates the 

model coefficients that minimize the MSE between the true fiducial positions and that 

estimated from corrected image dataset. As shown by Trzasko et al (Trzasko et al 2015), 

(local) minimizers of this problem can be efficiently determined using linearized Gauss-
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Newton iteration. This optimization solver can be initialized either using zero-matrix 

(assuming no a priori information about model coefficients) or using the model coefficients 

obtained from EM simulation.

2.4. Data Processing

All data processing was performed in Matlab environment (The MathWorks, Inc., Natick 

MA) on a stand-alone computer with a dual 8-core 2.6 GHz CPU and a 128 GB of memory. 

The ADNI phantom used in this work has 160 fiducials, hence T = 160. The software tool 

originally associated with the ADNI phantom (Gunter et al 2009) was used to track the 

fiducial positions, which serves as the function Λ{·}. The GNL correction function Γ{·} was 

implemented using the conventional GNL correction method based on image domain cubic 

spline interpolation (Glover and Pelc 1986). A rigid body transformation fitting was 

performed to match the relative fiducial positions from the true phantom design to the 

fiducial positions measured in each image data set. This rigid body transformation 

accounting for phantom rotation and shift was then applied to the designed relative fiducial 

positions (Πd) to yield the true fiducial positions (Π0). This process can be expressed as Π0 

=HΠ C){Π d} and is performed within each iteration when solving (2) with the rigid body 

transformation (H) obtained by minimizing the difference between the relative fiducial 

positions a priori known from phantom design ( Πd) and the fiducial positions measured in 

the corrected image data set ( Π (C)). The calibration procedure in (2) was initialized with 

the model coefficients obtained from EM simulation. Note that the GNL coefficients C in 

(2) were solved iteratively (Trzasko et al 2015). In the i-th iteration, the fiducial positions (Π 
(Ci−1)=Λ{Γ{x, C i−1}} ) were tracked from the image after correction using the previous 

model coefficients (Γ{x, C i−1}). The residual distortion fields were then estimated by 

comparing Π (Ci−1)=Λ{Γ{x, Ci−1}} and Π0=H Π (Ci−1) {Πd}, and were used to refine the 

GNL model coefficients in the current iteration (Ci). As iteration progresses, the residual 

distortion gradually decreases, and the accuracy of the fiducial tracking process (Λ{· }) as 

well as that of the rigid body transformation fitting (HΠ (C) ) improves. All the image data 

sets acquired at the isocenter and various offsets were used in thecalibration procedure. If 

not otherwise stated, images acquired with normal readout gradient polarity were used. The 

spherical harmonic polynomial of the n-th order has a total of 2n+1 model coefficients 

corresponding to the terms of different degrees. The calibration procedure can be performed 

using all the available terms at each order, or using a subset of these. In this work, only one 

degree at each order was used for each gradient in the calibration procedure (i.e.,  for X 

gradient,  for Y gradient,  for Z gradient). This configuration is consistent with the 

standard practice on GE’s systems and is incorporated in their gradient coil design (Glover 

and Pelc 1986; Turner 1986). On our gradient system, this configuration is justifiable 

because although its X and Y gradient coils had an asymmetric coil pattern in the 

longitudinal direction, their design still incorporated the m=1 harmonic dependence in the 

azimuthal direction (Turner 1986).

To test the effects of high-order spherical harmonic polynomial terms (N > 5), the iterative 

calibration procedure (2) was performed by incrementally increasing the model order N 
from 5 to 10 including both even- and odd-order terms. For each parameterization, the fitting 
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procedure was executed for 10 iterations, which was previously demonstrated sufficient for 

achieving convergence (Trzasko et al 2015). The calibrated coefficients of each case were 

then used to correct the GNL distortion using the standard method based on image domain 

interpolation, and the residual root-mean-squared-error (RMSE) of each case was then 

determined by comparing the estimated fiducial positions in the corrected images with the 

true fiducial positions. The RMSE of images corrected using coefficients (N = 10) obtained 

from EM simulation was also determined. The effect of even-order terms was tested by 

performing the calibration procedure using odd-order terms only, and calculating the RMSE 

from corrected images. To examine the effect of off-resonance on model coefficient 

estimation, the calibration procedure for the N = 10 case was repeated using the images 

acquired with readout gradient polarity reversed. The obtained coefficients were used to 

correct the same images used in previous analysis. The fiducial positions estimated from the 

corrected images were then compared with that estimated from images after the previous 

10th order correction using coefficients calibrated from images acquired with normal readout 

gradient polarity.

As an independent test, the ADNI image dataset acquired with FSPGR sequence was 

respectively corrected using the coefficients obtained from the proposed calibration process, 

as well as that obtained from the EM simulation (both up to 10th-order including odd and 

even order terms), and the residual rooted mean square errors (RMSE) of fiducial positions 

after both corrections were then calculated.

The calibrated coefficients at various orders (N = 5 to 10) were also utilized to correct the 

GNL distortion in the 3D CUBE T2 FLAIR data set using an integrated GNL correction 

method based on type-I non-uniform fast Fourier transform (NUFFT) (Tao et al 2016). For 

comparison, the simulation based model coefficients (N = 10) were also used for correction. 

The NUFFT operator was implemented with a 5-point Kaiser-Bessel interpolation kernel 

and a 1.25 times over-sampled FFT operator (Beatty et al 2005; Fessler and Sutton 2003).

3. Results

Among the 160 fiducials in the ADNI phantom, 159 fiducials were successfully tracked in 

each data set corresponding to a single phantom positioning. One fiducial was missing due 

to its low signal intensity, potentially caused by solution leakage, which is a documented 

issue in the ADNI phantom fleet (Gunter et al 2009). Consequently, a total of 1113 fiducials 

from seven data sets corresponding to seven phantom positioning were used in the iterative 

calibration procedure. The RMSE values in images corrected using calibrated coefficients of 

various orders including both odd- and even-order terms are shown in figure 2. As model 

order increases, the RMSE values gradually decreases and stabilizes after N = 9. Figure 2 

shows that the use of higher-order terms up to 10th order decreases the RMSE from 0.70 mm 

(5th order) to 0.36 mm. As a comparison, the RMSE from images corrected with EM 

simulation coefficients (up to 10th order) is determined to be 0.96 mm. Figure 2 also shows 

the RMSE values of images corrected using odd-order terms only. Comparison between 

RMSE values of using odd/even-order terms and using only odd-terms demonstrates the 

importance of the even-order terms in GNL correction for this asymmetric gradient system. 

Note that the number of polynomial basis used in the N=9 case with odd-order terms only is 
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the same as that used in the N=5 case with both even and odd-order terms, but the RMSE 

was 1.10 vs 0.70 mm, respectively. This demonstrates that the RMSE improvement is 

explained by the even-order terms used in the GNL calibration and correction, rather than 

solely the number of polynomial basis used. The difference between fiducial positions 

estimated from corrected images using the coefficients calibrated from images acquired 

using normal and reversed readout gradient polarity is 0.08±0.05 mm (mean value ± 

standard deviation). It shows that the influence of off-resonance on the calibration procedure 

was effectively suppressed by the high BW (±125 kHz). Figure 3 shows examples of images 

acquired at the superior end of the 26-cm DSV before and after correction using the 

calibrated 10th order coefficients. The image distortion apparent at the superior end of the 

phantom is successfully corrected.

Figure 4 shows residual displacement of each fiducial after correction using the 10th order 

coefficients obtained from EM simulation (a) and from calibration based on the described 

procedure (b), respectively. Each plot in the 3×3 panel of figure 4 shows the displacement of 

each fiducial from its true positions along the right/left (ΔRL), anterior/posterior (ΔAP) or 

superior/inferior (ΔSI) gradient axis in the corrected images, as a function of the true 

position of each fiducial along each gradient axis (RL, AP, SI). Comparison between figures 

4a and 4b shows that the residual displacements after correction using the EM simulation 

coefficients are reduced using the calibrated coefficients. The residual distortion fields in 

figure 4a for simulation coefficients show linear spatial dependence in the ΔAP vs. AP panel 

as well as ΔSI vs. SI panel, which suggests a potential for improvement of image geometric 

accuracy by recalibrating the AP and SI gradients. Gradient calibration is determined during 

field service, and cannot be accounted for using the EM simulation based coefficients. 

However, this first-order spatial distortion is captured in the proposed calibration procedure, 

which leads to reduced distortion field shown in figure 4b. For reference, the calibrated first-

order coefficients were combined with the EM simulation coefficients to yield a third set of 

coefficients (i.e., instead of using the simulation-based coefficients alone) and used for GNL 

correction, which yielded a RMSE of 0.40 mm, about 11% higher than that of the proposed 

calibrated 10-th order coefficients (0.36 mm).

As an independent test, the ADNI phantom images acquired using a different FSPGR 

sequence were corrected using the model coefficient obtained from the proposed GNL 

calibration as well as the EM simulation coefficients (both up to 10th order with odd and 

even terms). The residual RMSE measured from the corrected images are 0.36 mm (using 

coefficients from the proposed calibration), 0.96 mm (using coefficients from EM 

simulation) and 0.41 mm (the first-order coefficients from the proposed calibration 

combined with EM simulation coefficients), which demonstrate the improved image 

geometric accuracy using coefficients obtained from the proposed calibration.

Examples of the 3D CUBE T2 FLAIR images after correction using the calibrated 

coefficients of various orders are shown in figure 5. The difference images between two 

subsequent model orders (i.e., N = 5 vs. 7, N = 7 vs. 9, N = 9 vs. 10) are also shown, which 

highlight the relative contribution of high-order terms as model order N increases. The 

displayed window width of the difference images is reduced by 10 times to emphasize the 

difference and increase contrast. Including higher-order terms mainly impacts the geometric 
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accuracy of the periphery of imaging volume. Further increasing model order from 9 to 10 

provides marginal improvement, which is consistent with the RMSE values in figure 2. 

Figure 6 compares the images corrected using up to 10th order coefficients obtained from 

EM simulation and proposed calibration, along with the difference image. The first-order 

coefficients obtained from proposed iterative calibration were combined with the EM 

simulation coefficients and used for correction. A stronger difference can be observed at the 

periphery of the brain.

4. Discussion

In this work, we characterized the GNL field of a compact asymmetric MR gradient system 

using an iterative GNL calibration procedure and the ADNI phantom. The GNL-induced 

image geometric distortion presents a challenge for the compact asymmetric gradient system 

due to its more complex GNL fields, as compared to conventional whole-body MR gradients 

employing symmetric designs that typically require only 3rd and 5th order terms. Figure 2 

shows that the GNL field of this new system requires spherical harmonic polynomials terms 

of higher order (up to N = 10) including both odd- and even-order terms for accurate 

characterization. Based on the trends observed in Figure 2, we hypothesize that increasing 

the modeling order beyond the order of 10 will contribute minimal additional improvements 

in terms of RMSE, while increasing the risk of over-fitting and introducing potential 

numerical instability in data fitting process. The RMSE value across the entire 26-cm DSV 

of this system is reduced to 0.36 mm by use of up to 10th order terms, which satisfies the 

quality control criteria used in the ADNI study (Gunter et al 2009). As reported in a previous 

work, the American College of Radiology (ACR) MR phantom images corrected using the 

calibrated coefficients have successfully passed the ACR phantom image quality control 

(QC) tests (Weavers et al 2015). On the other hand, the on-scanner GNL correction based on 

only 3rd and 5th order coefficients from EM simulation failed the ACR phantom QC test due 

to inadequate geometric accuracy. The effects of off-resonance on the calibration procedure 

were minimized by the use of high acquisition bandwidth (BW = ±125kHz). The calibration 

procedure based on images acquired using readout gradient with normal or reversed polarity 

yielded equivalent GNL model coefficients. The mean difference in fiducial positions (0.08 

± 0.05 mm) estimated from images corrected using these two groups of coefficients were 

much smaller than the residual RMSE (0.36 mm).

The GNL information obtained from the calibration procedure can potentially benefit any 

MR application performed on this asymmetric gradient system. This is important in 3D 

volumetric imaging requiring high geometric accuracy, such as the 3D MPRAGE used in 

longitudinal tracking of brain white/gray matter volume change during the progress of 

Alzheimer’s disease (Gunter et al 2009). Specifically, the proposed calibrated higher-order 

model in GNL correction is especially relevant in improving the image geometric accuracy 

around the periphery of brain volume where grey matter volume is measured. In this case, 

the small volume change along with disease progress is especially susceptible to 

unaccounted for spatially-dependent GNL distortion, as patient positioning may vary across 

multiple scans which can cause GNL distortion of various degrees and lead to measurement 

error on the level of disease-induced volume change.
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The GNL model coefficients obtained in this work are compatible with the GNL correction 

framework utilized on commercial MR systems. They can be used as an independent 

verification for model coefficients obtained from EM simulation. Since the calibration is 

performed on a per-system basis, it can potentially identify system specific errors such as 

coil winding errors outside of manufacturing tolerances, etc. (Janke et al 2004), or identify 

system imperfections that require a recalibration of the gradient, as shown in figure 4. Note 

that the EM simulation-based coefficients yields sub-optimal RMSE (0.40 mm) even after 

the first-order terms was accounted for when compared with the proposed iterative 

calibration procedure (RMSE = 0.36 mm). This can be explained by the discrepancy 

between the ideal coil design assumed in the simulation and the actual coil position, caused 

by variation introduced in coil manufacturing. The calibration procedure used in this work 

was performed using a subset of the full spherical harmonic polynomial expansion, 

consistent with the standard practice on GE’s systems. It is possible to include the full 

expansion including all degrees terms in each order in the proposed calibration. However, a 

previous study has shown that the GNL correction accuracy in clinical applications is 

comparable across vendors using different model configurations (Gunter et al 2009). In 

practice, different MR acquisitions will be subject to various distortions in addition to GNL, 

such as those due to eddy current, concomitant field, and object-dependent susceptibility. 

The true benefit from the use of the additional degree terms in the presence of other 

distortion sources needs further investigation, which is beyond the scope of this work. 

Although including the higher-order terms (N>10), or terms of other degrees for each order 

can potentially further decrease RMSE, it could render the calibration process to be 

susceptible to over-fitting, while the standard configuration adopted here can reduce this 

effect.

5. Conclusion

We have demonstrated that it is feasible to calibrate the GNL field of a compact asymmetric 

MR gradient system using an iterative data fitting procedure based on the spherical harmonic 

polynomial model and the ADNI phantom. The image distortion is reduced using the 

calibrated GNL information up to the 10th order with both odd- and even-order terms. The 

demonstrated method can be applied to characterize and improve the spatial encoding 

accuracy of other gradient coils with unconventional designs.

Acknowledgments

The authors would like to thank Eric Fiveland, Kaely Thostenson and Erin Gray for their help and assistance for 
acquiring the data and designing experimental setup. We also thank Thomas Foo for his leadership in developing 
the compact 3T system. This project was partly supported by grants NIH R01EB010065, NIH 1C06RR18898-01 
and NIH R01CA190299 from the National Institute of Health.

References

Baldwin LN, Wachowicz K, Fallone BG. A two-step scheme for distortion rectification of magnetic 
resonance images. Med Phys. 2009; 36:3917–26. [PubMed: 19810464] 

Baldwin LN, Wachowicz K, Thomas SD, Rivest R, Fallone BG. Characterization, prediction, and 
correction of geometric distortion in 3 t mr images. Med Phys. 2007; 34:388–99. [PubMed: 
17388155] 

Tao et al. Page 10

Phys Med Biol. Author manuscript; available in PMC 2018 January 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Beatty PJ, Nishimura DG, Pauly JM. Rapid gridding reconstruction with a minimal oversampling ratio. 
IEEE Trans Med Imaging. 2005; 24:799–808. [PubMed: 15959939] 

Bydder GM, Young IR. Mr imaging - clinical use of the inversion recovery sequence. Journal of 
Computer Assisted Tomography. 1985; 9:659–75. [PubMed: 2991345] 

Chagla GH, Busse RF, Sydnor R, Rowley HA, Turski PA. Three-dimensional fluid attenuated 
inversion recovery imaging with isotropic resolution and nonselective adiabatic inversion provides 
improved three-dimensional visualization and cerebrospinal fluid suppression compared to two-
dimensional flair at 3 tesla. Investigative radiology. 2008; 43:547–51. [PubMed: 18648253] 

Chen Z, Ma CM, Paskalev K, Li J, Yang J, Richardson T, Palacio L, Xu X, Chen L. Investigation of mr 
image distortion for radiotherapy treatment planning of prostate cancer. Phys Med Biol. 2006; 
51:1393–403. [PubMed: 16510951] 

Doran SJ, Charles-Edwards L, Reinsberg SA, Leach MO. A complete distortion correction for mr 
images: I. Gradient warp correction. Phys Med Biol. 2005; 50:1343–61. [PubMed: 15798328] 

Edelman RR, Dunkle E, Koktzoglou I, Griffin A, Russell EJ, Ankenbrandt W, Ragin A, Carrillo A. 
Rapid whole-brain magnetic resonance imaging with isotropic resolution at 3 tesla. Investigative 
radiology. 2009; 44:54–9. [PubMed: 19060723] 

Fessler JA, Sutton BP. Nonuniform fast fourier transforms using min-max interpolation. IEEE Trans 
Signal Process. 2003; 51:560–74.

Glover, GH., Pelc, NJ. Method for correcting image distortion due to gradient nonuniformity Patent. 
US Patent. US4591789. 1986. 

Gunter JL, Bernstein MA, Borowski BJ, Ward CP, Britson PJ, Felmlee JP, Schuff N, Weiner M, Jack 
CR. Measurement of mri scanner performance with the adni phantom. Med Phys. 2009; 36:2193–
205. [PubMed: 19610308] 

Han X, Jovicich J, Salat D, van der Kouwe A, Quinn B, Czanner S, Busa E, Pacheco J, Albert M, 
Killiany R, Maguire P, Rosas D, Makris N, Dale A, Dickerson B, Fischl B. Reliability of mri-
derived measurements of human cerebral cortical thickness: The effects of field strength, scanner 
upgrade and manufacturer. Neuroimage. 2006; 32:180–94. [PubMed: 16651008] 

Harvey PR, Katznelson E. Modular gradient coil: A new concept in high-performance whole-body 
gradient coil design. Magn Reson Med. 1999; 42:561–70. [PubMed: 10467301] 

Huang K, Cao Y, Baharom U, Balter JM. Phantom-based characterization of distortion on a magnetic 
resonance imaging simulator for radiation oncology. Phys Med Biol. 2016; 61:774–90. [PubMed: 
26732744] 

Hwang K, Maier J, Slavens Z, McKinnon G. Increased mr spatial accuracy with improved gradient 
nonlinearity and magnet inhomogeneity correction. Med Phys. 2012a; 39:3976.

Hwang K, McKinnon G, Lorbiecki J, Maier J. Spatial accuracy quantification of an mr system. Med 
Phys. 2012b; 39:3976.

Jack CR Jr, Bernstein MA, Fox NC, Thompson P, Alexander G, Harvey D, Borowski B, Britson PJ, 
JLW, Ward C, Dale AM, Felmlee JP, Gunter JL, Hill DL, Killiany R, Schuff N, Fox-Bosetti S, Lin 
C, Studholme C, DeCarli CS, Krueger G, Ward HA, Metzger GJ, Scott KT, Mallozzi R, Blezek D, 
Levy J, Debbins JP, Fleisher AS, Albert M, Green R, Bartzokis G, Glover G, Mugler J, Weiner 
MW. The alzheimer’s disease neuroimaging initiative (adni): Mri methods. J Magn Reson 
Imaging. 2008; 27:685–91. [PubMed: 18302232] 

Janke A, Zhao H, Cowin GJ, Galloway GJ, Doddrell DM. Use of spherical harmonic deconvolution 
methods to compensate for nonlinear gradient effects on mri images. Magn Reson Med. 2004; 
52:115–22. [PubMed: 15236374] 

Jovicich J, Czanner S, Greve D, Haley E, van der Kouwe A, Gollub R, Kennedy D, Schmitt F, Brown 
G, MacFall J, Fischl B, Dale A. Reliability in multi-site structural mri studies: Effects of gradient 
non-linearity correction on phantom and human data. Neuroimage. 2006; 30:436–43. [PubMed: 
16300968] 

Kallmes DF, Hui FK, Mugler JP 3rd. Suppression of cerebrospinal fluid and blood flow artifacts in 
flair mr imaging with a single-slab three-dimensional pulse sequence: Initial experience. 
Radiology. 2001; 221:251–5. [PubMed: 11568348] 

Lee SK, Mathieu JB, Graziani D, Piel J, Budesheim E, Fiveland E, Hardy CJ, Tan ET, Amm B, Foo 
TK, Bernstein MA, Huston J 3rd, Shu Y, Schenck JF. Peripheral nerve stimulation characteristics 

Tao et al. Page 11

Phys Med Biol. Author manuscript; available in PMC 2018 January 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of an asymmetric head-only gradient coil compatible with a high-channel-count receiver array. 
Magn Reson Med. 2015; doi: 10.1002/mrm.26044

O’Donnell M, Edelstein WA. Nmr imaging in the presence of magnetic field inhomogeneities and 
gradient field nonlinearities. Med Phys. 1985; 12:20–6. [PubMed: 3974521] 

Roemer, PB. Transverse gradient coils for imaging the head Patent. US Patent. US5177442. 1993. 

Schad LR, Ehricke HH, Wowra B, Layer G, Engenhart R, Kauczor HU, Zabel HJ, Brix G, Lorenz WJ. 
Correction of spatial distortion in magnetic-resonance angiography for radiosurgical treatment 
planning of cerebral arteriovenous-malformations. Magn Reson Imaging. 1992; 10:609–21. 
[PubMed: 1501531] 

Tan ET, Lee SK, Weavers PT, Graziani D, Piel JE, Shu Y, Huston J 3rd, Bernstein MA, Foo TK. High 
slew-rate head-only gradient for improving distortion in echo planar imaging: Preliminary 
experience. J Magn Reson Imaging. 2016; doi: 10.1002/jmri.25210

Tan ET, Marinelli L, Slavens ZW, King KF, Hardy CJ. Improved correction for gradient nonlinearity 
effects in diffusion-weighted imaging. J Magn Reson Imaging. 2013; 38:448–53. [PubMed: 
23172675] 

Tao S, Trzasko JD, Shu Y, Weavers PT, Huston J 3rd, Gray EM, Bernstein MA. Partial fourier and 
parallel mr image reconstruction with integrated gradient nonlinearity correction. Magn Reson 
Med. 2016; 75:2534–44. [PubMed: 26183425] 

Tao S, Trzasko JD, Shu YH, Huston J, Bernstein MA. Integrated image reconstruction and gradient 
nonlinearity correction. Magn Reson Med. 2015a; 74:1019–31. [PubMed: 25298258] 

Tao S, Trzasko JD, Shu YH, Huston J, Johnson KM, Weavers PT, Gray EM, Bernstein MA. 
Noncartesian mr image reconstruction with integrated gradient nonlinearity correction. Med Phys. 
2015b; 42:7190–201. [PubMed: 26632073] 

Trzasko, JD., Tao, S., Gunter, JL., Shu, Y., Huston, J., Weavers, PT., Bernstein, MA. Phantom-based 
iterative estimation of mri gradient nonlinearity. Proceedings of the 23rd Annual Meeting of the 
ISMRM; Toronto, Canada: International Society of Magnetic Resonance in Medicine; 2015. p. 
3735

Turner R. A target field approach to optimal coil design. J Phys D Appl Phys. 1986; 19:L147–L51.

Wang DM, Doddrell DM, Cowin G. A novel phantom and method for comprehensive 3-dimensional 
measurement and correction of geometric distortion in magnetic resonance imaging. Magn Reson 
Imaging. 2004; 22:529–42. [PubMed: 15120173] 

Weavers P, Shu Y, Tao S, Lee S, Piel J, Mathieu JB, Foo T, Bernstein M. Head-only asymmetric 
gradient system evaluation: Acr image quality and acoustic noise. Med Phys. 2015; 42:1259–64.

Tao et al. Page 12

Phys Med Biol. Author manuscript; available in PMC 2018 January 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
The ADNI phantom used in this work. The phantom is a 20-cm spherical shell that has 160 

spherical fiducials (1.0 cm or 1.5 cm in diameters) with known positions.

Tao et al. Page 13

Phys Med Biol. Author manuscript; available in PMC 2018 January 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
The residual root-mean-squared error (RMSE) after correction using the proposed calibrated 

spherical harmonic polynomial model coefficients of various model orders including both 

odd- and even-order terms (solid line), or including odd-order terms only (circles).
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Figure 3. 
Examples of ADNI phantom images (FOV shifted from gradient isocenter by 3 cm in the 

superior direction) before and after gradient nonlinearity correction using the calibrated 

model coefficients (spherical harmonic polynomial model N = 10 including both even- and 

odd-order terms). The images corrected using model N=5 with odd-order only are also 

shown, which demonstrates residual distortion at the phantom superior end in the coronal 

and sagittal planes (see zoom-in panels and arrows).

Tao et al. Page 15

Phys Med Biol. Author manuscript; available in PMC 2018 January 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
The residual displacement of phantom fiducials after correction using the spherical harmonic 

polynomial model coefficients (N = 10) obtained from EM simulation (a) and proposed 

iterative calibration (b) along the three orthogonal gradient axes (right/left = R/L, anterior/

posterior = A/P, superior/inferior = S/I). Each plot of the 3 by 3 panels represents the 

displacement of each fiducial from its true positions along one gradient axis (i.e., ΔRL, ΔAP, 

ΔSI), as a function of the true position of that fiducial (i.e., RL, AP, SI).
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Figure 5. 
Examples of the 3D T2 FLAIR images after correction using the calibrated coefficients of 

various orders (N = 5, 7, 9, 10), and the difference images between two subsequent fitting 

orders (i.e., N = 5 vs. 7, N = 7 vs. 9, N = 9 vs. 10). The displayed window width of the 

difference images is reduced by 10 times from that of the anatomical images to emphasize 

differences and to increase contrast.
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Figure 6. 
Examples of the 3D T2 FLAIR images after correction using up to 10th order coefficients 

obtained from EM simulation and the proposed iterative calibration, as well as the difference 

image between the two. The displayed window width of the difference images is reduced by 

10 times from that of the anatomical images to emphasize differences and to increase 

contrast.
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